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Abstract
We discuss the modelling of a microswimmer that operates in a ‘squirmer’ mode, by means of
stochastic rotation dynamics. The squirmer that we model can easily be tuned between a
‘pusher’ and a ‘puller’. We examine the flows produced by the squirmer and find that there is
good agreement between both the predicted and simulated velocities of locomotion and the
resulting flow field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Swimming at low Reynolds number is a subject of great
interest because microorganisms, due to their small size, must
adapt to an environment in which viscous forces dominate over
inertial forces. In this case, the reversal of forces acting on
the fluid, e.g., through the no-slip boundary condition, leads to
reversal of the induced fluid flow. Any swimming mechanism
of an isolated object must therefore be non-reciprocal [1].

One solution that organisms such as Paramecium adopt
is to beat filaments known as cilia which cover their entire
outer surface. These filaments have a complex internal
structure and display a variety of different beating patterns
that can be synchronized with wavelength of order 5–10
filament spacings [2]. Because the number of such filaments
is high, simplified models are required in order to be able
to theoretically model such organisms. Various models have
been implemented that have varying resolution. One such
treatment is to consider the organism a simple geometrical
shape such as a sphere and consider wavelike deformations of
the outer surface [3, 4]. The motivation for this approximation
is that the tips of the cilia make a continuous surface
that covers the organism. These so-called ‘squirmers’ have
attracted some interest recently as they allow pairs [5] and
collections [6] of interacting microswimmers to be simulated.
These studies have taken the limit of a purely tangential surface
velocity whereas the original model included provisions for
both tangential and radial velocities. There is also the
possibility that some microorganisms may swim directly
through deformations of the cell membrane [7, 8].

A range of numerical techniques can be used to study
low Reynolds number swimmers. In the limit of zero
Reynolds number, the long-range effects of hydrodynamics
can be included into models that treat the fluid implicitly.

The squirmer that is the focus of the current work has
been simulated using the Stokesian dynamics method [5, 6].
This formalism, based on the Oseen tensor and mobilities
derived from it, has also been used to study magnetoelastic
filaments [9] and the swimming of Spiroplasma [10].
Alternatively, for slender filaments, an anisotropic friction
coefficient can be used [11, 12]. These techniques have varying
degrees of accuracy and are by and large straightforward and
efficient to implement for small systems. One limitation,
however, is the difficulty with which complex geometries can
be studied.

This problem is not serious for several modern simulation
methods that explicitly model the fluid. The mesoscopic
lattice-Boltzmann method [13] has been used to study the three
link swimmer of Najafi and Golestanian [14]. The swimming
of sperm cells and synchronization of cilia was simulated with
multi-particle collision dynamics [15].

So far there have only been a few studies of low Reynolds
number swimmers that explicitly include thermal fluctuations.
Earl et al considered the three link swimmer and an elastic
filament using multi-particle collision dynamics [13] and
Lobaskin et al have considered the Brownian motion of a
swimmer using the lattice-Boltzmann method [16]. In the
following paper we discuss the implementation of a squirmer
driven by a prescribed velocity field on the surface of a sphere
using multi-particle collision dynamics. Section 2 gives details
of the simulation technique. This is followed by a set of results
in section 3. Finally there is a short conclusions section.

2. Model details

The microswimmer that we consider here is driven by a
purely tangential distortion on the outer surface of a ‘colloidal’
particle of radius a. The velocity at a point rs on the surface is
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given by the expression [6]:

vs(rs, ê) =
2∑

n=1

2

n(n + 1)
Bn

(
ê · rs

a

rs

a
− ê

)
P ′

n(ê ·rs/a), (1)

where the Bn are constants, P ′
n(x) is the derivative of

the nth Legendre polynomial, and ê is a unit direction
vector associated with the sphere. From equation (1)
one immediately calculates the polar velocity component in
spherical coordinates, uθ = B1 sin θ + (B2/2) sin 2θ , where
θ = arccos(ê · rs/a) is the polar angle. For this model the
velocity of the colloid in the direction ê is determined from
the fact that the total force acting on the swimmer is zero
and amounts to 2B1/3 [4, 5]. The second parameter, B2,
changes the characteristics of the distortion, see figure 1. For
β ≡ B2/B1 < 0, the propulsion acts from the rear of the object
(similar to biological swimmers—pushers); if β > 0 then the
propulsion acts from the front of the swimmer—pullers. The
analytic form of the resulting flow field for a single squirmer
can be calculated analytically and is reproduced in appendix.

To model the solvent, we use the stochastic rotation
dynamics (SRD) algorithm [17], a molecular dynamics method
for effective fluid particles that can be used to efficiently
simulate hydrodynamic solvent modes. The algorithm can be
easily modified so that external objects can be incorporated
within the simulation [18], with the result that simulations
can be performed on systems of objects immersed in a bath
with which momentum and thermal energy can be exchanged.
Implementation of SRD is straightforward and the technique
has the advantage that the transport coefficients of the fluid
can be calculated analytically [19, 20]. The SRD fluid consists
of an ideal gas of particles that undergo periodic ‘collisions’.
During a collision, the simulation box is divided into cubic
cells of dimension h × h × h. The velocity of the centre of
mass, vcm, of particles contained within each cell is calculated
and the velocity of each particle with respect to vcm is then
rotated by an angle α around an axis chosen at random. The
new velocity for the i th particle is given by

v′
i = vcm + R[vi − vcm], (2)

where R is a rotation matrix. Between collisions, the particles
stream forward along straight trajectories for a time δt

ri (t + δt) = ri (t) + δtvi (t). (3)

The collision step conserves the momentum and kinetic
energy of the cell particles while the streaming step transfers
momentum between cells. These two components are
sufficient to create a dynamical system that satisfies the
Navier–Stokes equation with the rotation angle, α, streaming
time, δt , and mean cell occupancy, γ , determining the solvent
transport coefficients [19, 20]. We note that there are variations
of this collision rule that allow the angular momentum of the
cell to be conserved [21].

To implement a non-slip boundary on the surface of
the colloid/squirmer we follow the implementation of [22]
with some minor modifications. During the streaming
step collisions between the colloid and solvent particles are

Figure 1. Polar velocity on the surface of the squirmer.

identified. At each collision, a new random thermal velocity
for the solvent particle is chosen relative to the velocity of the
contact point on the colloid surface:

vcontact = vc + vs(r − rc, ê) + Ω ∧ (r − rc), (4)

where r is the collision point, the colloid position, velocity
and angular velocity are rc, vc and Ω, and vs is the
prescribed velocity from equation (1). The tangential
and normal components of the random thermal velocity
for the colliding particle are chosen from the distributions
p(v) ∝ exp(−mv2/2kBT ) and p(u) ∝ u exp(−mu2/2kBT )

respectively. The velocity and rotational velocities of the
colloid are then set so that the linear and angular momentum
of the colloid–particle pair before and after the collision are
conserved. In this way fluctuations of both the rotational and
translational degree of freedom of the colloid can be simulated.

The colloidal particle overlaps with the cells that are
used in the SRD simulation. We follow previous work that
attempted to reduce slip on boundaries and fill the colloid with
particles at random positions [21, 23], which are newly chosen
before each collision step. The particles are given the velocity
of the colloid surface at the same polar angle θ = arccos(ê ·
rs/a) and then participate in the SRD collision process with all
the particles within one cell. The colloid is given the change in
momentum that occurs during this step for the particles filling
the colloid. Of the variations in boundary conditions that we
tried, we found that this gave the closest agreement with the
theoretical prediction of the squirmer velocity. The relevant
values of the simulation parameters that we use are given in
table 1.

3. Results

Short, independent simulations of the model presented in
section 2 were performed for a number of different values of
B1 in order to calculate the time average velocity v = 〈ê · vc〉.
The results of these are shown in figure 2(a). The velocity
is linear in B1 with a slope of 0.601 ± 0.001 for sets I–II
and 0.639 ± 0.001 for set III. This compares favourably with
the exact value of 2/3 and represents a reasonable value for
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Figure 2. Simulation results for the velocity of the squirmer. Each point represents the result from a different independent simulation. The
dashed lines indicate the predicted value (a) variation of the swimming speed 〈ê · vc〉 with B1, parameter sets I (◦), II (	) and III (♦),
(b) variation of speed with β for B1 = 0.04, parameter set II (	) and III (♦).

Table 1. Parameters for the SRD fluid and the colloidal particle.
Units are chosen such that kBT = 1, h = 1 and m = 1, time is
measured in units h

√
m/kBT . The colloid mass is taken to be the

same as the mass of solvent particles that it displaces.

Parameter Set I Set II Set III

Mean occupancy per collision cell, γ 5 5 5
Rotation angle, α π/2 2π/3 2π/3
Collision length, λ = δt/h

√
kBT/m 0.1 0.02 0.02

Kinematic viscosity, ν 0.5 3.350 3.350
Number of cells along each axis, n 24 24 60
Squirmer radius, a/h 4 4 10

the coarse grained technique that we use. It also indicates
the possibility that increasing the ratio of the squirmer radius
to the collision cell size, h, may be helpful in increasing the
accuracy of the simulations. The linearity holds over the range
of Reynolds numbers studied (up to a maximum Re = vr/ν ≈
0.23).

In figure 2(b) the variation of v is plotted against β for
B1 = 0.04. As expected, there is almost no variation across the
range of β studied for set III. The results for set II are however
not in such good agreement, with a noticeable reduction in the
velocity for β < 0. The cause of this asymmetry is not clear,
though is likely to be due to the fact that the smaller colloid
radius reduces the accuracy of the simulation.

In figure 3 velocity field profiles are shown for β = 0 and
±5. The tangential velocity on the surface of the squirmer is
given by uθ = B1 sin(θ)(1 + β cos(θ)). Therefore for |β| > 1
there is a section of the surface that has surface velocity in the
direction opposite to the motion and as a consequence there
will be flow in the direction opposite to ê. This flow can be
seen for β = ±5. Also noticeable for the larger values of β is
the formation of a ring vortex close to the pole and a maximum
in the tangential velocity on the opposite hemisphere. The
complete extent of the simulation box is shown in these plots
and it is apparent the box is not large enough to capture the full
1/r 2 decay of the flow field that is predicted by equation (A.1)
for the cases β = ±5. For β = 0 the flow field is less

long range since it decays as 1/r 3. The power consumed
by the swimmer to propel itself through the fluid amounts to
P/P0 = 2(1 + β2/2), where P0 = 6πηav2 is the power one
would need to drag a particle with the swimmer’s velocity v

and size through the fluid [4]. It can, for example, be calculated
from the power dissipated by the fluid flow. The longer range
of the fluid field for β �= 0 and the ring vortices result in
an increased power consumption. Interestingly, the minimum
power consumption for a squirmer with β = 0 is just twice the
one of a passive particle.

Comparisons with the analytic flow field given in
equation (A.1) are shown in figure 4. Overall, this field is well
reproduced for β = 0, for ±5 however, there are significant
deviations fore and aft of the squirmer in the regions where
the velocity field takes on its maximum value. There are two
systematic contributions to the error in the simulated flow field.
First, for |β| = 5, the spatial variation in the driving flow
on the boundary of the colloid (shown in figure 1) is large in
comparison with the cell size used in the simulation algorithm.
Second, as described above, the flow field has a long-range
character for |β| > 0 and finite size effects due to the limited
box size affect the results. Improvements can therefore be
made by either increasing the ratio of the squirmer radius to
the cell size, a/h, or by increasing the number of simulation
cells, n. We find that flow fields generated using parameter set
III more accurate than those shown in figure 4.

Although the method we have used to model the squirmer
matches the predictions for the translational velocity, we have
not yet explored the effects of thermal fluctuations on the
colloid. We present briefly some initial results. First we note
that the mean squared value of the angular frequency does
not give a value in agreement with the equipartition theorem
and we find a value of 〈Ω(t) · Ω(t)〉 that is approximately six
times the expected value, see figure 5(a)1. This is due to the
1 We can exploit the linearity of solutions to the Stokes equations to view
the rotation and translation of the squirmer as two independent problems:
translation of a squirmer with the surface velocity given by equation (1) and
rotation of a colloid with a no-slip boundary condition. In the latter problem
there will be no rotation except through thermal fluctuations and we therefore
expect the equipartition theorem to hold.
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Figure 3. Flow field around the squirmer in the frame of the moving colloid, parameter set II, B1 = 0.04 (a) β = 0, (b) β = −5, (c) β = +5.

Figure 4. Difference between the flow field shown in figure 3 and the analytic velocity given in equation (A.1) (a) β = 0, (b) β = −5,
(c) β = +5.

additional particles that are placed within the colloid, and a
separate set of results shows that this discrepancy disappears
if we remove these particles from the simulation (see the thick
dark line in figure 5(a)). However, we note that in this latter
case the mean translational velocity takes approximately half
the value of the analytic theory.

The rotation of ê with time means that the path taken
by the squirmer is that of a persistent random walk with
persistence time τ given by the time required for the
autocorrelation function 〈ê(t) · ê(0)〉 to decay to 1/e, see

figure 5(b). This characteristic time is related to the rotational
diffusion coefficient, Dr, by τ = 1/2Dr [24]. We find τ is
the same for all values of B1 and β within a given parameter
set. Taking 〈ê(t) · ê(0)〉 = exp(−t/τ) and using r(t) =
r(0)+v

∫ t
0 dt ′ê(t ′) it is possible to show that the mean squared

displacement has the form
〈|r(t) − r(0)|2〉 = 2v2τ t − 2v2τ 2(1 − exp(−t/τ)). (5)

A similar analysis has been performed on the trajectories of
self-propelling chemical colloids [25]. A comparison between
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Figure 5. Effect of the orientational degree of freedom on the path taken by the colloid. (a) Autocorrelation function of the colloid angular
velocity, 〈Ω(t) ·Ω(0)〉. The dashed line indicates the value 3kBT/I expected from equipartition theory for a colloid with moment of inertia I
at equilibrium with a heat bath. The upper curves represents different values of B1 in the range 0.01–0.12 for parameter set II; the lower curve
is for a simulation where solvent particles within the colloidal particle are not included in the SRD collision step. (b) Autocorrelation function
of the squirmer orientation, 〈ê(t) · ê(0)〉; the decay time τ is indicated (same data as (a)). (c) Comparison between the simulated (solid line)
and analytic (thick dashed line; v = 2B1/3) mean squared displacements (B1 = 0.12, parameter set II; vertical dashed line indicates τ ).

the simulated value of 〈|r(t)−r(0)|2〉 and equation (5) is shown
in figure 5(c). For long times, the trajectory is diffusive and τ

sets the crossover time from ballistic (i.e. ∝t2) to linear scaling
of the mean squared displacement. This change can be seen
in the pronounced bend of |rc(t) − rc(0)|2 close to a time in
agreement with τ . One cause of the systematic discrepancy
between equation (5) and the measured value is the fact that
the squirmer velocity is slightly less than 2B1/3 for parameter
set II.

4. Conclusions

We have presented an implementation of a microswimmer
using the stochastic rotation dynamics algorithm. We have
found that the technique correctly yields the predicted velocity
for a given set of input parameters and that flow field around
the squirmer can be tuned so that the majority of the propulsive
force comes from either the front or the back of the squirmer.
Future studies of the method might include examination of
the influence that no-slip boundaries, for instance in a slab
geometry, have on the orientation and velocity of the particle.
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Appendix. Flow field

The analytic form for the fluid velocity can be found in the
literature [4, 5]. To keep this paper self-contained we repeat
these formulae here for a frame that leaves the fluid at infinity

at rest. The velocity of the fluid at a position r measured from
the centre of the squirmer is

vfluid = B1

(a

r

)3
(

ê · r
r

r
r

− ê
3

)

+ 1

2

((a

r

)4 −
(a

r

)2
)

B2 P2

(
ê · r

r

)
r
r

+
(a

r

)4
B2

ê · r
r

(
ê · r

r

r
r

− ê
)

, (A.1)

where r = |r|. Subtracting 2
3 B1ê from this gives the flow fields

shown in figure 3.

References

[1] Purcell E M 1977 Am. J. Phys. 45 3
[2] Brennen C and Winet H 1977 Annu. Rev. Fluid Mech.

9 339–98
[3] Lighthill J 1952 Commun. Pure. Appl. Math. 5 109–18
[4] Blake J R 1971 J. Fluid Mech. 46 199–208
[5] Ishikawa T, Simmonds M P and Pedley T J 2006 J. Fluid Mech.

568 119
[6] Ishikawa T and Pedley T J 2008 Phys. Rev. Lett. 100 088103
[7] Ehlers K M, Samuel A D T, Berg H C and Montgomery R 1996

Proc. Natl Acad. Sci. 93 8340–3
[8] Leshansky A M, Kenneth O, Gat O and Avron J E 2007 New J.

Phys. 9 145
[9] Gauger E M and Stark H 2006 Phys. Rev. E 74 021907

[10] Wada H and Netz R R 2007 Phys. Rev. Lett. 99 108102
[11] Lowe C P 2003 Trans. R. Soc. Lond. B 358 1543
[12] Lagomarsino M C, Capuani F and Lowe C P 2003 J. Theor.

Biol. 224 215
[13] Earl D J, Pooley C M, Ryder J F, Bredberg I and Yeomans J M

2007 J. Chem. Phys. 126 064703
[14] Najafi A and Golestanian R 2004 Phys. Rev. E 69 062901
[15] Elgeti J 2006 Sperm and Cilia Dynamics PhD Thesis

University of Köln
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